Barone's Amino Acid Code Cheatsheet There are **20 amino acids** and <u>9 of them are essential.</u> Here are the one and three letter codes for the amino acids: | Amino acid | Three letter code | One letter code | |----------------|-------------------|---------------------| | Alanine | ala | A | | Arginine | arg | R | | Asparagine | asn | N | | Aspartic acid | asp | D | | Cysteine | cys | С | | Glutamic acid | glu | Е | | Glutamine | gln | Q | | Glycine | gly | G | | Histidine* | his | Н | | Isoleucine* | ile | I | | Leucine* | leu | L | | Lysine* | lys | K | | Methionine* | met | M | | Phenylalanine* | phe | F | | Proline | pro | P | | Serine | ser | S | | Threonine* | thr | Т | | Tryptophan* | trp | W | | Tyrosine | tyr | Y | | Valine* | val | V
Ironerocks.com | ^{*}Essential Amino Acids The amino acid letter codes are often used when describing mutations. Here are some key mutations that you should know for the boards! | Barone Rocks.com The Official Site of John Barone, N.D. | Gene | Mutation | | |---|-------------|--|--| | Cystic Fibrosis | CFTR | △F508 Deletion of Phenylalanine at 508 | | | | | Results in a misfolded CFTR protein that is tagged
with ubiquitin and destroyed by the proteosome
complex. | | | Cystic Fibrosis | CFTR | G551D Missense mutation Glycine is replaced by Aspartic acid at position 551 Results in a defective CFTR protein. | | | Hemochromatosis | HFE | C282Y Missense mutation Cystine is replaced by Tyrosine at position 282 Results in decreased hepcidin and overabsorption of iron in the small intestine. | | | Hemochromatosis | HFE | H63D Missense mutation Histidine is replaced by Aspartic acid at position 63 Results in decreased hepcidin and overabsorption of iron in the small intestine. | | | Sickle cell anemia | Beta globin | E6V Missense mutation Gluatamic acid is replaced by Valine at position 6 Results in to formation of Hb S. | | | Melanoma
Hairy Cell Leukemia
Many other tumors | B-Raf | V600E Missense mutation Valine is replaced by Glutamic acid at position 600 Results in activation of the BRAF serine-threonine kinase. | | | Hyperprothrombinemia (Hypercoaguability) | Prothrombin | G20210A Missense mutation Glycine is replaced by Alanine in the position 20210 Results in increased plasma prothrombin levels. | | | Factor V Leiden (Hypercoaguability) | Factor V | G1691A Missense mutation Glycine is replaced by Alanine in the position 1691 Results in loss of the Factor V cleavage site that activated protein C uses to breakdown Factor V. | | | Polycythemia vera
Essential
thrombocythemia
Myelofibrosis | JAK2 | V617F Missense mutation Valine is replaced by Phenylalanine in position 617 Results in overactivity of the JAK2 tyrosine kinase causing EPO-independent myloproliferation and overproduction of RBCs (P.vera) or Platelets (ET). | | | Baronerocks.com Baronerocks.com Baronerocks.com Baronerocks.com Baronerocks.com | | | |